
MORE ARDUINO

TANGIBLE MEDIA & PHYSICAL COMPUTING

RECAP
ALGORITHMIC APPROACHES
TIMERS

AGENDA

RECAP: LAST WEEK WE DID:
ARDUINO IDE INTRO
MAKE SURE BOARD AND USB PORT SELECTED
UPLOAD PROCESS
COVERED DATATYPES
BASIC PROGRAMMING SYNTAX AND CONSTRUCTS
I/O : DIGITAL (R/W) AND ANALOG (R/W (PWM))
DELAY()
SERIAL DEBUGGING

VARIABLE RESISTORS & PULL UP/DOWN

EXPLANATION ON BOARD

 

RECAP
ALGORITHMIC APPROACHES
TIMERS

AGENDA

ALGORITHMIC APPROACHES
MICROCONTROLLERS CAN SENSE WHAT’S GOING ON IN THE
PHYSICAL WORLD USING DIGITAL AND ANALOG SENSORS, BUT A
SINGLE SENSOR READING DOESN’T TELL YOU MUCH. IN ORDER TO
TELL WHEN SOMETHING SIGNIFICANT HAPPENS, YOU NEED TO
KNOW WHEN THAT READING CHANGES.

WE WILL LOOK AT HOW TO DETECT FOR THREE COMMON
CHANGES IN SENSOR READINGS THAT GIVE YOU INFORMATION
ABOUT REAL WORLD EVENTS:  
STATE CHANGE DETECTION ON DIGITAL SENSORS, AND
THRESHOLD CROSSING AND PEAK DETECTION ON ANALOG
SENSORS. YOU’LL USE THESE THREE TECHNIQUES ALL THE TIME
WHEN YOU’RE DESIGNING TO READ USERS’ ACTIONS.
 

SENSOR CHANGES
SENSOR CHANGES ARE DESCRIBED IN TERMS OF THE
CHANGE IN VOLTAGE OUTPUT OVER TIME.
THE MOST IMPORTANT CASES TO CONSIDER FOR SENSOR
CHANGE ARE :
 
THE RISING AND FALLING EDGES OF A DIGITAL OR BINARY
SENSOR,
THE RISING AND FALLING EDGES AND THE PEAK OF AN
ANALOG SENSOR.

THE FOLLOWING GRAPHS OF SENSOR VOLTAGE OVER TIME
ILLUSTRATE THESE CONDITIONS: 

SENSOR CHANGES : DIGITAL
 

DIGITAL SENSORS CHANGE FROM HIGH VOLTAGE TO LOW AND VICE VERSA.
THE CHANGE FROM LOW VOLTAGE TO HIGH IS CALLED THE RISING EDGE, &
THE CHANGE FROM HIGH VOLTAGE TO LOW IS CALLED THE FALLING EDGE.

SENSOR CHANGES: ANALOG
 

THE THREE GENERAL STATES OF AN ANALOG SENSOR ARE :
 
RISING (CURRENT STATE > PREVIOUS STATE),
WHEN IT’S FALLING (CURRENT STATE < PREVIOUS STATE),
AND WHEN IT’S AT A PEAK.

SENSOR CHANGES : DIGITAL

TO TELL THAT A DIGITAL SENSOR IS CURRENTLY ACTIVE
(I.E. A BUTTON IS PRESSED) WHEN WIRED WITH A PULL
DOWN RESISTOR, WE CAN FORMULATE THE FOLLOWING
EXPRESSION

if (digitalRead(BUTTON_PIN == HIGH) 
{ 
 // we know that the sensor has been  
 activated… 
} 

HOWEVER - WE WANT TO KNOW SOMETHING MORE ….

DIGITAL STATE CHANGE DETECTION

DID THE DIGITAL SENSOR JUST CHANGE?
NEED A VARIABLE TO HOLD THE PREVIOUS BUTTON STATE:
int prevButtonState = LOW; // global var
void loop() {  
 int buttonState = digitalRead(BUTTON_PIN); 
  
if (buttonState != prevButtonState) { 
 // do stuff if it is different here 
 } 
 
 // save button state for next comparison: 
 prevButtonState = buttonState;  
}

APPLICATION: COUNTING PRESSES

int prevButtonState = LOW;  
int buttonPresses = 0; // #of button presses
void loop() {  
 int buttonState = digitalRead(BUTTON_PIN); 
  
 if (buttonState != prevButtonState) {  
 // do stuff if it is different here 
  
 if (buttonState == HIGH) {  
 buttonPresses++ 
 } 
 } 
 prevButtonState = buttonState;  
}

SENSOR CHANGES : ANALOG

WHEN YOU’RE USING ANALOG SENSORS, BINARY STATE
CHANGE DETECTION IS NOT USUALLY EFFECTIVE, BECAUSE
YOUR SENSORS CAN HAVE MULTIPLE STATES (1024).

THE SIMPLEST FORM OF ANALOG STATE CHANGE
DETECTION IS TO LOOK FOR THE SENSOR TO RISE ABOVE A
GIVEN THRESHOLD IN ORDER TO TAKE ACTION.

IF YOU WANT THE ACTION BE TRIGGERED ONLY ONCE
WHEN YOUR SENSOR PASSES THE THRESHOLD, YOU NEED
TO KEEP TRACK OF BOTH ITS CURRENT STATE AND
PREVIOUS STATE. 

SENSOR CHANGES : ANALOG SIMPLE

 
int threshold = 512;  
 // an arbitrary threshold value

void loop() {  
 // read the sensor: 
 int sensorVal = analogRead(A0);
 // if it's above the threshold: 
 if (sensorVal >= threshold) { 
 //do something 
 }
}

 

SENSOR CHANGES : ANALOG: RISING

int prevSenseState = 0; int threshold = 512;  
 
void loop() {  
 int sensorVal = analogRead(A0);
 if (sensorVal >= threshold) { 
 
 // Was previous Val was BELOW threshold? 
  
 if(prevSenseState < threshold){ 
 // now we do something ONCE 
 } 
 } 
 prevSenseState = sensorVal; 
}

SENSOR CHANGES : ANALOG: FALLING

int prevSenseState = 0; int threshold = 512;  
 
void loop() {  
 int sensorVal = analogRead(A0);
 if (sensorVal <= threshold) { 
 
 // Was previous Val was ABOVE threshold? 
  
 if(prevSenseState > threshold){ 
 // now we do something ONCE 
 } 
 } 
 prevSenseState = sensorVal; 
}

PEAK DETECTION
int peakValue = 0;
void loop() {  
 //read sensor on pin A0: 
 int sensorValue = analogRead(A0);  
 
 // check if it's higher than the current peak: 
 if (sensorValue > peakValue) {  
 // set a new peak 
 peakValue = sensorValue; 
 } 
}
 

PEAK DETECTION
int peakValue = 0; int threshold = 50;

void loop() { 
 int sensorValue = analogRead(A0); 
 if (sensorValue > peakValue) { 
 peakValue = sensorValue; 
 }
 if (sensorValue <= threshold) {  
  
 if (peakValue > threshold){  
 //Have a peak value: do something  
 // & reset peak variable: 
 peakValue = 0; 
 } 
 } 
}

DEALING WITH NOISE
 

QUITE OFTEN, YOU GET NOISE FROM SENSOR READINGS THAT CAN
INTERFERE WITH PEAK READINGS.  
INSTEAD OF A SIMPLE CURVE, YOU GET A JAGGED RISING EDGE FILLED
WITH MANY LOCAL PEAKS:

DEALING WITH NOISE
int peakValue = 0; int threshold = 50; int noise=5;

void loop() { 
 int sensorValue = analogRead(A0); 
 if (sensorValue > peakValue) { 
 peakValue = sensorValue; 
 }
 if (sensorValue <= threshold - noise) { 
  
 if (peakValue > threshold + noise){ 
 //Have a peak value: do something  
 // & reset peak variable: 
 peakValue = 0; 
 } 
 } 
}

LET’S FILTER NOISY DATA …
MEASUREMENTS FROM THE REAL WORLD OFTEN CONTAIN  
NOISE.

NOISE IS JUST THE PART OF THE SIGNAL YOU DIDN’T
WANT & FILTERING IS A METHOD TO REMOVE SOME OF
THE UNWANTED SIGNAL TO LEAVE A SMOOTHER RESULT.
 

AVERAGE FILTER
ONE OF THE EASIEST WAYS TO FILTER NOISY DATA IS BY
AVERAGING:

ADD TOGETHER A NUMBER OF MEASUREMENTS,
THEN DIVIDE THE TOTAL BY THE NUMBER OF
MEASUREMENTS YOU ADDED TOGETHER.  

THE MORE MEASUREMENTS YOU INCLUDE IN THE
AVERAGE, THE MORE NOISE GETS REMOVED.
 

AVERAGE FILTER FUNCTION
int calcAverage() {  
 
 float sumSenseVal = 0;  
 int samplesToAverage = 16; // arbitrary
 for(int i = 0; i < samplesToAverage; i++){ 
 averageSenseVal+=readSenseVal(); 
 delay(1);  
 }
 int averageVal =  
 sumSenseVal / samplesToAverage; 
 
 return averageVal;  
}

RUNNING AVERAGE FILTER FUNCTION

ONE DISADVANTAGE OF THE AVERAGE FILTER IS THE
AMOUNT OF TIME NEEDED TO MAKE A MEASUREMENT.

AN ALTERNATIVE TO TAKING ALL THE MEASUREMENTS AT
ONCE, THEN AVERAGING THEM IS:
TO TAKE ONE MEASUREMENT AT A TIME AND ADD IT TO A
RUNNING AVERAGE.

 

RUNNING AVERAGE FILTER FUNCTION
const int RUNNING_SAMPLES= 16; 
int runningAverageBuffer[RUNNING_SAMPLES];  
int nextCount =0; 
 
void loop(){ 
 int rawSenseVal = analogRead(SENSE_PIN);  
 runningAverageBuffer[nextCount] = rawSenseVal;  
 nextCount++; 
 if (nextCount >= RUNNING_SAMPLES)  
 nextCount = 0;  
 
 int currentSum= 0; 
 for(int i=0; i< RUNNING_SAMPLES; i++){ 
 currentSum+= runningAverageBuffer[i]; 
 } 
 int averageVal = currentSum / RUNNING_SAMPLES;  
 delay(100); 
}

WEIGHTED AVERAGE FILTER FUNCTION
THE LAST APPROACH TO FILTER AN ANALOG SENSOR
READING IS BY TAKING A WEIGHTED AVERAGE OF
SAMPLES OF THE SENSOR.  
 
IT’S BASED ON THIS ALGORITHM:
 
filteredValue = weight*rawValue+(1-weight)*lastFilteredValue

WEIGHT IS A VALUE BETWEEN 0 AND 1 THAT INDICATES HOW RELIABLE THE
NEW RAW VALUE IS. 
  
IF IT’S 100% RELIABLE, WEIGHT = 1, AND NO FILTERING IS DONE. 
IF IT’S TOTALLY UNRELIABLE, WEIGHT = 0, AND THE RAW RESULT IS
FILTERED OUT.
 

WEIGHTED AVERAGE FILTER FUNCTION
const float weight = 0.5; 
float prevEst = 0.0;

void loop() { 
 int sensorVal = analogRead(A0); 
  
 // filter the sensor's result: 
 float currEst= filter(sensorVal, weight, prevEst); 
  
 // save the current result for future use: 
 prevEst= currentEst;  
} 
 
// filter the current result using a weighted avg filter: 
float filter (float rawValue, float w, float lastValue) { 
 float result = w * rawValue + (1.0-w)*lastValue; 
 return result; 
} 

RECAP
ALGORITHMIC APPROACHES
TIMERS

AGENDA

TIMING FUNCTIONS
TIMING IS VERY IMPORTANT - ELECTRONICS ARE NOT
INSTANTANEOUS AND MOST COMPONENTS REQUIRE SOME
TIME BEFORE THEY CAN BE ACCESSED. QUERYING THE
SENSOR BEFORE IT IS READY CAN RESULT IN MALFORMED
DATA OR RETRIEVING A PREVIOUS RESULT.  
IN THIS INSTANCE ONE NEEDS TO USE DELAY():

TELLS THE MICRO CONTROLLER TO WAIT TO THE
SPECIFIED NUMBER OF MS BEFORE RESUMING THE
SKETCH

TIMING FUNCTIONS
DELAYMICROSECONDS():
SIMILAR TO DELAY() BUT INSTEAD OF WAITING MS - THE
PARAMETER TO THE FUNCTION IS IN MICROSECONDS.

MILLIS() :  
RETURNS THE NUMBER OF MS THAT THE SKETCH HAS
BEEN RUNNING FOR . CAN ALSO BE USED EFFECTIVELY TO
CALCULATE HOW LONG SOME ACTION TAKES…

MICROS(): 
SIMILAR TO MILLIS() EXCEPT IT COUNTS IN
MICROSECONDS.

TIMING CONCEPTS : BACK TO BLINK
BUILD THE CIRCUIT ON YOUR BREADBOARD
ADD THE CODE AND UPLOAD
#define LED_PIN 13
void setup() {  
pinMode(LED_PIN, OUTPUT);  
}
void loop() { 
digitalWrite(LED_PIN, HIGH);  
delay(1000); //wait for a second  
digitalWrite(LED_PIN, LOW);  
delay(1000); // wait for a second 
}
  

TIMING CONCEPTS: A SIMPLE MOTOR
LETS DO ANOTHER ARDUINO EXAMPLE USING A SERVO
MOTOR: (CODE IS CALLED “A”) USE SAME BREADBOARD.

TIMING CONCEPTS: MOTOR & LED BLINK
WHAT HAPPENS IF WE TRY TO BLINK AND SWEEP? 
(TAKE THE OTHER EXAMPLE FROM SLACK CALLED “B”)

SWEEP USES THE DELAY() TO CONTROL THE SWEEP
SPEED.
BLINK USES THE DELAY() BETWEEN TURNING OFF/ON LED

WHEN COMBINING THE BASIC BLINK SKETCH WITH THE
SERVO SWEEP EXAMPLE, YOU WILL FIND THAT IT
ALTERNATES BETWEEN BLINKING AND SWEEPING. BUT IT
WON'T DO BOTH SIMULTANEOUSLY.

TIMING CONCEPTS: TIMERS
LETS BUILD A TIMER!

WE WILL USE A SIMPLE TECHNIQUE FOR IMPLEMENTING
TIMING BY KEEPING TRACK OF A TIMER WHICH RECORDS
HOW MUCH TIME HAS PASSED SINCE THE TIMER STARTED.

INSTEAD OF USING A DELAY() - WE WILL JUST CHECK
REGULARLY OUR TIMER - TO SEE IF IT IS TIME FOR AN
ACTION TO BE TAKEN

MEANWHILE THE PROCESSOR IS FREE TO DO OTHER
THINGS….

TIMING CONCEPTS: BLINK 1

LET’S CHANGE OUR BLINK SKETCH TO USE A TIMER
INSTEAD OF A DELAY()… OPEN THE APPROPRIATE CODE
FROM SLACK: C SKETCH
UPLOAD & TEST - IS IT DIFFERENT?

FUNCTIONALLY: NO
BUT IT ILLUSTRATES AN IMPORTANT CONCEPT:  
A STATE MACHINE
 
THE PROGRAM REMEMBERS THE CURRENT STATE OF THE
LED AND THE LAST TIME IT CHANGED

TIMING CONCEPTS: BLINK 2

LETS MAKE A MODIFIED SKETCH - WHERE NOW WE WANT
TO FLASH THE LED WITH A DIFFERENT ON AND OFF TIME:
- WITHOUT A DELAY -

CODE: “D” (IN SLACK)

TIMING CONCEPTS: 2 LEDS
OK - NOW WE ARE GOING TO TRY AND HAVE TWO LEDS
EACH BLINKING AT DIFFERENT RATES: (E)

TIMING CONCEPTS: 2 MOTORS + 3 LEDS

TIMING CONCEPTS: ADD IN A BUTTON

